O'Reilly logo

Statistical Shape Analysis, 2nd Edition by Kanti V. Mardia, Ian L. Dryden

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

15 Euclidean methods

15.1 Distance-based methods

An alternative to working with geometrical configurations directly is to work with inter-landmark distances. Consider the squared Euclidean distance matrix D from the configuration X (k × m matrix) given by:

where (X)r are the coordinates of the rth point (r = 1, …, k). We consider methods for shape and size-and-shape analysis that involve working with the full collection of such distance matrices, and in some cases the estimates can be similar to Procrustes techniques. Traditional morphometrics studying lengths, ratios of lengths or angles usually considers just a subset of the inter-landmark distances, and was summarized in Section 2.3.

15.2 Multidimensional scaling

15.2.1 Classical MDS

Multidimensional scaling (MDS) is concerned with constructing a configuration of k points in Euclidean space from information about the distances between the k points (see Mardia et al. 1979, pp. 394–398). Consider X to be a k × m configuration with k × k squared Euclidean distance matrix D, as in Equation (15.1). It can be shown that D is a squared Euclidean distance matrix if and only if

numbered Display Equation

is positive semi-definite, where C is the k × k centring matrix of Equation (2.3). We can interpret B as the centred inner product matrix of the ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required