 Index number for 1945 by

1. $\begin{array}{ll}\text{Laspeyre}’\mathrm{s}\mathrm{method}\hfill & =\frac{\mathrm{\Sigma }{p}_{0}{q}_{0}}{\mathrm{\Sigma }{p}_{1}{q}_{1}}×100\hfill \\ =\frac{610}{240}×100=254.2\hfill \end{array}$ 2. $\begin{array}{ll}\text{Paasche}’\mathrm{s}\mathrm{method}\hfill & =\frac{\mathrm{\Sigma }{p}_{1}{q}_{1}}{\mathrm{\Sigma }{p}_{0}{q}_{1}}×100\hfill \\ =\frac{426}{170}×100=250.6\hfill \end{array}$ 3. $\begin{array}{ll}\mathrm{Bowley}\mathrm{method}\hfill & =\frac{\left[\frac{\mathrm{\Sigma }{p}_{1}{q}_{0}}{\mathrm{\Sigma }{p}_{0}{q}_{0}}+\frac{\mathrm{\Sigma }{p}_{1}{q}_{1}}{\mathrm{\Sigma }{p}_{0}{q}_{1}}\right]}{2}×100\hfill \\ =\frac{2.542+2.506}{2}×100=252.4\hfill \end{array}$ 4. $\begin{array}{ll}\mathrm{Marshall}\text{Edgeworth}’\mathrm{s}\mathrm{index}\mathrm{number}\hfill & =\frac{\mathrm{\Sigma }{p}_{1}{q}_{0}+\mathrm{\Sigma }{p}_{1}{q}_{1}}{\mathrm{\Sigma }{p}_{0}{q}_{0}+\mathrm{\Sigma }{p}_{0}{q}_{1}}×100\hfill \\ =\frac{610+426}{240+170}×100=252.7\hfill \end{array}$

5. $\begin{array}{ll}\text{Fisher}’\mathrm{s}\mathrm{index}\mathrm{number}={p}_{01}\hfill & =\sqrt{\frac{\mathrm{\Sigma }{p}_{1}{q}_{0}}{\mathrm{\Sigma }{p}_{0}{q}_{0}}×\frac{\mathrm{\Sigma }{p}_{1}{q}_{1}}{\mathrm{\Sigma }{p}_{0}{q}_{1}}}×100\hfill \\ =\sqrt{\frac{610}{240}×\frac{426 ...}{}}\hfill \end{array}$

Get Statistical Techniques for Transportation Engineering now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.