Skip to Content
Statistics for Machine Learning
book

Statistics for Machine Learning

by Pratap Dangeti
July 2017
Beginner to intermediate
442 pages
10h 8m
English
Packt Publishing
Content preview from Statistics for Machine Learning

Forward propagation and backpropagation

Forward propagation and backpropagation are illustrated with the two hidden layer deep neural networks in the following example, in which both layers get three neurons each, in addition to input and output layers. The number of neurons in the input layer is based on the number of x (independent) variables, whereas the number of neurons in the output layer is decided by the number of classes the model needs to be predicted.

For ease, we have shown only one neuron in each layer; however, the reader can attempt to create other neurons within the same layer. Weights and biases are initiated from some random numbers, so that in both forward and backward passes, these can be updated in order to minimize the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Probability and Statistics for Machine Learning

Probability and Statistics for Machine Learning

Jon Krohn

Publisher Resources

ISBN: 9781788295758Supplemental Content