Markov decision processes and Bellman equations

Markov decision process (MDP) formally describes an environment for reinforcement learning. Where:

  • Environment is fully observable
  • Current state completely characterizes the process (which means the future state is entirely dependent on the current state rather than historic states or values)
  • Almost all RL problems can be formalized as MDPs (for example, optimal control primarily deals with continuous MDPs)

Central idea of MDP: MDP works on the simple Markovian property of a state; for example, St+1 is entirely dependent on latest state St rather than any historic dependencies. In the following equation, the current state captures all the relevant information from the history, which means ...

Get Statistics for Machine Learning now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.