398 Statistics of Medical Imaging
12.4 Appendices
12.4.1 Appendix 12A
This appendix derives pdf of Z, Eq. (1 2.16), and the probabilities of the over
and under-de tec tion of the number of image regions, P
ov
Eq. (12.18) and P
ud
Eq. (12.19).
A.1 pdf of Z
This section proves Eq. (12.16).
Proof.
Y
K
of Eq. (12.11) has a χ
2
distribution with a degree o f freedom (J − K).
Its pdf is
p
Y
K
(y) =
1
2
J−K
2
Γ(
J−K
2
)
e
−
y
2
y
J−K
2
−1
(y
> 0)
0 (y ≤ 0).
(12.54)
Let Z
K
0
=
1
K
0
ˆσ
0
Y
K
0
a
nd Z
K
1
=
1
K
1
ˆσ
1
Y
K
1
.
Their pdfs are
p
Z
K
(z) =
(
K
0
ˆσ
0
2
)
J−K
0
2
Γ(
J−K
0
2
)
e
−
K
0
ˆσ
0
2
z
z
J−K
0
2
−1
(z
> 0)
0 (z ≤ 0),
(12.55)
p
Z
K
(z) =
(
K
1
ˆσ
1
2
)
J−K
1
2
Γ(
J−K
1
2
)
e
−
K
1
ˆσ
1
2
z
z
J−K
1
2
−1
(z
> 0)
0 (z ≤ 0).
(12.56)
Assume that Z
K
0
and Z
K
1
are indepe ndent. The pdf h(z) of Z = Z
K
1
−Z
K
0
is
h(z) =
Z
∞
−∞
p
Z
K
1
(u)p
Z
K
0
(u − z)du
=
R
∞
0
p
Z
K
1
(u)p
Z
K
0
(u − z)du (z < 0)
R
∞
z
p
Z
K
1
(u)p
Z
K
0
(u − z)du (z ≥ 0).
(12.57)
Substituting Eqs. (12.55), (12.56) into Eq. (12.57), using formula [44]
Z
∞
0
x
n
e
−ax
dx =
n!
a
n+1
(a > 0) , (12.58)
Get Statistics of Medical Imaging now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.