Appendix A. References for Part I

  • [Armbrust2018] Armbrust, M., T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and M. Zaharia. “Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark,” May 27, 2018. https://stanford.io/2Jia3iY.

  • [Bhartia2016] Bhartia, R. “Optimize Spark-Streaming to Efficiently Process Amazon Kinesis Streams,” AWS Big Data blog, February 26, 2016. https://amzn.to/2E7I69h.

  • [Chambers2018] Chambers, B., and Zaharia, M., Spark: The Definitive Guide. O’Reilly, 2018.

  • [Chintapalli2015] Chintapalli, S., D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Musbaum, K. Patil, B. Peng, and P. Poulosky. “Benchmarking Streaming Computation Engines at Yahoo!” Yahoo! Engineering, December 18, 2015. http://bit.ly/2bhgMJd.

  • [Das2013] Das, Tathagata. “Deep Dive With Spark Streaming,” Spark meetup, June 17, 2013. http://bit.ly/2Q8Xzem.

  • [Das2014] Das, Tathagata, and Yuan Zhong. “Adaptive Stream Processing Using Dynamic Batch Sizing,” 2014 ACM Symposium on Cloud Computing. http://bit.ly/2WTOuby.

  • [Das2015] Das, Tathagata. “Improved Fault Tolerance and Zero Data Loss in Spark Streaming,” Databricks Engineering blog. January 15, 2015. http://bit.ly/2HqH614.

  • [Dean2004] Dean, Jeff, and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters,” OSDI San Francisco, December, 2004. http://bit.ly/15LeQej.

  • [Doley1987] Doley, D., C. Dwork, and L. Stockmeyer. “On the ...

Get Stream Processing with Apache Spark now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.