Chapter 1
Parametric Sensitivity of Damped Systems
Changes of the eigenvalues and eigenvectors of a linear vibrating system due to changes in system parameters are of wide practical interest. Motivation for this kind of study arises, on the one hand, from the need to come up with effective structural designs without performing repeated dynamic analysis, and, on the other hand, from the desire to visualize the changes in the dynamic response with respect to system parameters. Furthermore, this kind of sensitivity analysis of eigenvalues and eigenvectors has an important role to play in the area of fault detection of structures and modal updating methods. Sensitivity of eigenvalues and eigenvectors is useful in the study of bladed disks of turbomachinery where blade masses and stiffness are nearly the same, or deliberately somewhat altered (mistuned), and one investigates the modal sensitivities due to this slight alteration. Eigensolution derivatives also constitute a central role in the analysis of stochastically perturbed dynamical systems. Possibly, the earliest work on the sensitivity of the eigenvalues was carried out by Rayleigh [RAY 77]. In his classic monograph, he derived the changes in natural frequencies due to small changes in system parameters. Fox and Kapoor [FOX 68] have given exact expressions for the sensitivity of eigenvalues and eigenvectors with respect to any design variables. Their results were obtained in terms of changes in the system property matrices and ...
Get Structural Dynamic Analysis with Generalized Damping Models: Identification now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.