0π/2cos (zcosx)cosax dx=asinaπ2s1,a(z)=π4secaπ4[Ja(z)+Ja(z)]=π4cosecaπ2[Ea(z)Ea(z)]=asinaπ2[1a2+k=1(1)k1z2ka2(22a2)(42a2)[(2k)2a2]]

si2777_e  WA 339

[a > 0]

18. 

0πcos (zcosx)cosnx dx=12ππcos (zcosx)cosnx dx=πcosnπ2Jn(z)

si2778_e  GW (334)(56b)

19. 

0π/2cos (zcosx)cos2nx dx=(1)nπ2J2n(z)

si2779_e  WA 30(9)

20. 

0π/2cos (zcosx)sin2vx dx=π2(2z)vΓ(v+12)Jv(z)

  WA 35, WH

[Rev>12]

21. 

0π/2cos (zcosx)sin2μx dx=π(2z)μΓ(μ+12)Jμ(z)

  WH

[Reμ>12]

Get Table of Integrals, Series, and Products, 8th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.