0π/2cos (zcosx)cosax dx=asinaπ2s1,a(z)=π4secaπ4[Ja(z)+Ja(z)]=π4cosecaπ2[Ea(z)Ea(z)]=asinaπ2[1a2+k=1(1)k1z2ka2(22a2)(42a2)[(2k)2a2]]

si2777_e  WA 339

[a > 0]

18. 

0πcos (zcosx)cosnx dx=12ππcos (zcosx)cosnx dx=πcosnπ2Jn(z)

si2778_e  GW (334)(56b)

19. 

0π/2cos (zcosx)cos2nx dx=(1)nπ2J2n(z)

si2779_e  WA 30(9)

20. 

0π/2cos (zcosx)sin2vx dx=π2(2z)vΓ(v+12)Jv(z)

  WA 35, WH

[Rev>12]

21. 

0π/2cos (zcosx)sin2μx dx=π(2z)μΓ(μ+12)Jμ(z)

  WH

[Reμ>12]

Get Table of Integrals, Series, and Products, 8th Edition now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.