0dxxn+1k=0nsin(akx)=π2k=1nak[a0>k=1nak,ak>0]

si2954_e  FI II 646

2. 

0sin(ax)xn+1dxk=1nsin(akx)j=1mcos(bjx)=π2k=1nak[a>k=1n|ak|+j=1m|bj|]

si2955_e  WH

3.747

1.7 

0π/2xmsinxdx=(π2)m[1m+k=122k1142k1(m+2k)ζ(2k)]=2πG72ζ(3)

si2956_e  LI (206)(2)

[m=2]si2957_e

2. 

0π/2xdxsinx=0π/2(π2x)dxcosx=2G

  BI(204)(18), BI(206)(1), GW(333)(32)

3.12 

0x(x2+a2)sinxdx=

Get Table of Integrals, Series, and Products, 8th Edition now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.