0dxxn+1k=0nsin(akx)=π2k=1nak[a0>k=1nak,ak>0]

si2954_e  FI II 646

2. 

0sin(ax)xn+1dxk=1nsin(akx)j=1mcos(bjx)=π2k=1nak[a>k=1n|ak|+j=1m|bj|]

si2955_e  WH

3.747

1.7 

0π/2xmsinxdx=(π2)m[1m+k=122k1142k1(m+2k)ζ(2k)]=2πG72ζ(3)

si2956_e  LI (206)(2)

[m=2]si2957_e

2. 

0π/2xdxsinx=0π/2(π2x)dxcosx=2G

  BI(204)(18), BI(206)(1), GW(333)(32)

3.12 

0x(x2+a2)sinxdx=

Get Table of Integrals, Series, and Products, 8th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.