$\left[\begin{array}{lll}0\le b<n,\hfill & n\ge 1,\hfill & r=\left(n-b\right)/2\hfill \end{array}\right]$

6.^{11}

$\begin{array}{ll}{\displaystyle {\int}_{0}^{\infty}{\left(\frac{sinx}{x}\right)}^{n}cosanx\text{d}x=0}\hfill & \left[\begin{array}{llll}a\le -1\text{or}a\ge \text{1,}\hfill & n\ge 2;\hfill & \text{for}\hfill & n=1\text{see}3.741\text{2}\hfill \end{array}\right]\hfill \end{array}$

3.837

1.

${\int}_{0}^{\pi /2}\frac{{x}^{2}\text{d}x}{{sin}^{2}x}}=\pi \mathrm{ln}2$

BI (206)(9)

2.

${\int}_{0}^{\pi /4}\frac{{x}^{2}\text{d}x}{{sin}^{2}x}}=-\frac{{\pi}^{2}}{16}+\frac{\pi}{4}\mathrm{ln}2+G$

BI (204)(10)

3.

${\int}_{0}^{\pi /4}\frac{{x}^{2}\text{d}x}{{cos}^{2}x}}=\frac{{\pi}^{2}}{16}+\frac{\pi}{4}\mathrm{ln}2-G$

GW (333)(35a)

4.

${\int}_{0}^{\pi /4}\frac{{x}^{p+1}}{{sin}^{2}x}\text{d}x}=$

Get *Table of Integrals, Series, and Products, 8th Edition* now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.