$\begin{array}{r}\hfill {\int }_{u}^{c}\sqrt{\frac{\left(a-x\right)\left(b-x\right)}{c-x}}\text{d}x=\frac{2}{3}\sqrt{a-c}\left[2\left(b-c\right)F\left(\beta ,p\right)+\left(2c-a-b\right)E\left(\beta ,p\right)\right]\\ \hfill +\frac{2}{3}\left(a+2b-2c-u\right)\sqrt{\frac{\left(a-u\right)\left(c-u\right)}{b-u}}\end{array}$ BY (232.09)

$[a>b>c>u]$ 32.

$\begin{array}{r}\hfill {\int }_{c}^{u}\sqrt{\frac{\left(a-x\right)\left(b-x\right)}{c-x}}\text{d}x=\frac{2}{3}\sqrt{a-c}\left[\left(a+b-2c\right)E\left(\gamma ,q\right)-\left(a-b\right)F\left(\gamma ,q\right)\right]\\ \hfill +\frac{2}{3}\sqrt{\left(a-c\right)\left(b-u\right)\left(u-c\right)}\end{array}$ BY (233.07)

$[a>b≥u>c]$ 33.

$\begin{array}{r}\hfill {\int }_{u}^{b}\sqrt{\frac{\left(a-x\right)\left(b-x\right)}{c-x}}\text{d}x=\frac{2}{3}\sqrt{a-c}\left[\left(a+b-2c\right)E\left(\delta ,q\right)-\left(a-b\right)F\left(\delta ,q\right)\right]\\ \hfill +\frac{2}{3}\left(2c-2a-b+u\right)\sqrt{\frac{\left(b-u\right)\left(u-c\right)}{a-u}}\end{array}$

BY (234.09)

$[a>b≥u>c]$

34.

$\begin{array}{l}{\int }_{b}^{u}\sqrt{\frac{\left(a-x\right)\left(x-b\right)}{x-c}}\text{d}x=\frac{2}{3}\sqrt{a-c}\left[\hfill \end{array}$

Get Table of Integrals, Series, and Products, 8th Edition now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.