## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

No credit card required

$\begin{array}{ll}{\int }_{0}^{u}\frac{{x}^{2}\text{d}x}{\sqrt{{\left({a}^{2}+{x}^{2}\right)}^{3}\left({b}^{2}-{x}^{2}\right)}}\hfill & =\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}\left\{F\left(\text{γ},r\right)-E\left(\text{γ},r\right)\right\}\hfill \end{array}$

BY (214.04)

$[b≥u>0]$

6.

$\begin{array}{ll}{\int }_{u}^{b}\frac{{x}^{2}\text{d}x}{\sqrt{{\left({a}^{2}+{x}^{2}\right)}^{3}\left({b}^{2}-{x}^{2}\right)}}\hfill & =\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}\left\{F\left(\text{δ},r\right)-E\left(\text{δ},r\right)\right\}+\frac{u}{{a}^{2}+{b}^{2}}\sqrt{\frac{{b}^{2}-{u}^{2}}{{a}^{2}+{u}^{2}}}\hfill \end{array}$

BY (213.07)

$[b>u≥0]$

7.

$\begin{array}{ll}{\int }_{b}^{u}\frac{{x}^{2}\text{d}x}{\sqrt{{\left({a}^{2}+{x}^{2}\right)}^{3}\left({x}^{2}-{b}^{2}\right)}}\hfill & =\frac{1}{\sqrt{{a}^{2}+{b}^{2}}}E\left(\epsilon ,s\right)-\frac{{a}^{2}}{u\left({a}^{2}+{b}^{2}\right)}\sqrt{\frac{{u}^{2}-{b}^{2}}{{u}^{2}+{a}^{2}}}\hfill \end{array}$

BY (211.13)

$[u>b>0]$

8.

$\begin{array}{l}{\int }_{u}^{}\hfill \end{array}$

## With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

No credit card required