8.94 The Chebyshev polynomials Tn(x) and Un(x)

8.940 Definition

1. Chebyshev's polynomials of the first kind

Tn(x)=cos(n arccos x)=12[(x+i1x2)n+(xi1x2)n]=xn|(2n)xn2(1x2)+(4n)x(1x2)2(6n)xn6(1x2)3+|

si1677_e  NA 66, 71

2. Chebyshev's polynomials of the second kind:

Un(x)=sin[(n+1)arccosx]sin[arccosx]=12i1x2[(x+i1x2)n+1(xi1x2)n+1]=(1n+1)xn(3n+1)xn2(1x2)+(5n+1)xn4(1x2)2

si1678_e

Functional relations

8.941 Recursion formulas:

1. 

Tn+1(x)2x Tn(x)+Tn1(x)=0

  NA 358

2. 

Un+1(x)2x Un(x)+Un1(x)=0

3. 

Tn(x)=Un(x)x Un1(x)

  EH II 184(3) ...

Get Table of Integrals, Series, and Products, 8th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.