8.57 Lommel functions

8.570 Definitions of the Lommel functions sμν(z) and Sμν(z):

1.12 

sμ,v(z)=m=0(1)mzμ+1+2m[(μ+1)2v2][(μ+3)2v2][(μ+2m+1)2v2]???????????????????????????????[μ±v?is?not?a?negative?odd?integer]=zμ1m=0(1)m(z2)2m+2Γ(12μ12v+12)Γ(12μ+12v+12)Γ(12μ12v+m+32)Γ(12μ+12v+m+32)???????????????????????????????????????????????????????[μ±v?is?not?a?negative?odd?integer]

si1107_e  EH II 40(69), WA 377(2)

2.12 

Sμ,v(z)=sμ,v(z)+2μ1Γ(12μ12v+12)Γ(12μ+12v+12)×cos[12(μv)π]Jv(z)cos[12(μ+v)π]Jv(z)sinvπ       [μ±v?is?a?positive?odd?integer,v?is?an?odd?integer]

  EH II 40(71), WA 379(2)

=sμ,v(z)+2μ1Γ(12μ12v+12)Γ(12μ+12v+12)×{sin[12(μ

Get Table of Integrals, Series, and Products, 8th Edition now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.