O'Reilly logo

TensorFlow Machine Learning Cookbook by Nick McClure

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Implementing Loss Functions

Loss functions are very important to machine learning algorithms. They measure the distance between the model outputs and the target (truth) values. In this recipe, we show various loss function implementations in TensorFlow.

Getting ready

In order to optimize our machine learning algorithms, we will need to evaluate the outcomes. Evaluating outcomes in TensorFlow depends on specifying a loss function. A loss function tells TensorFlow how good or bad the predictions are compared to the desired result. In most cases, we will have a set of data and a target on which to train our algorithm. The loss function compares the target to the prediction and gives a numerical distance between the two.

For this recipe, we will cover ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required