Working with Nearest Neighbors
We start this chapter by implementing nearest neighbors to predict housing values. This is a great way to start with nearest neighbors because we will be dealing with numerical features and continuous targets.
Getting ready
To illustrate how making predictions with nearest neighbors works in TensorFlow, we will use the Boston housing dataset. Here we will be predicting the median neighborhood housing value as a function of several features.
Since we consider the training set the trained model, we will find the k-NNs to the prediction points and do a weighted average of the target value.
How to do it…
- First, we will start by loading the required libraries and starting a graph session. We will use the requests module to ...
Get TensorFlow Machine Learning Cookbook now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.