Testing a fraud detection model

Once the training process is complete, break down the reconstruction error in the testing set by fraudulent and non-fraudulent (normal) transactions. Generate the reconstruction error by different classes of transactions:

def plot_reconstruction_error_by_class(self):self.get_test_predictions()mse = np.mean(np.power(self.test_data - self.test_predictions, 2), axis=1)self.recon_error = pd.DataFrame({'recon_error': mse,'true_class': self.y_test})## Plotting the errors by class# Normal Transactionsfig = plt.figure(num = "Recon Error with Normal Transactions")fig.set_size_inches(12, 6)ax = fig.add_subplot(111)normal_error_df = self.recon_error[(self.recon_error['true_class'] == 0) & (self.recon_error['recon_error'] ...

Get TensorFlow Machine Learning Projects now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.