Theory of Machines

Book description

The third edition of Theory of Machines: Kinematics and Dynamics comprehensively covers theory of machines for undergraduate students of Mechanical and Civil Engineering. The main objective of the book is to present the concepts in a logical, innovative and lucid manner with easy to understand illustrations and diagrams; the book is a treasure in itself for Mechanical Engineers.

Table of contents

  1. Cover
  2. Title Page
  3. Brief Contents
  4. Contents
  5. Dedication
  6. Preface to the Third Edition
  7. Preface
  8. About the Author
  9. Chapter 1. Mechanisms
    1. 1.1 Introduction
    2. 1.2 Kinematic Joint
      1. 1.2.1 Type of Kinematic Joints
    3. 1.3 Elements or Links
      1. 1.3.1 Classification of Links
    4. 1.4 Kinematic Pair
      1. 1.4.1 Classification of Kinematic Pairs
    5. 1.5 Constrained Motion
    6. 1.6 Kinematic Chain
    7. 1.7 Mechanism
      1. 1.7.1 Types of Mechanisms
      2. 1.7.2 Equivalent Mechanisms
    8. 1.8 Mechanism and Machines
      1. 1.8.1 Classification of Machines
    9. 1.9 Degrees of Freedom
      1. 1.9.1 Degrees of Freedom of Planar Mechanisms
      2. 1.9.2 Planar Mechanisms with Lower Pairs Only
    10. 1.10 Four-Bar Chain
    11. 1.11 Grashof’s Law
      1. 1.11.1 Crank–Crank (or Double Crank) Mechanism
      2. 1.11.2 Crank–Rocker (or Lever) Mechanism
      3. 1.11.3 Rocker–Rocker (or Double Rocker) Mechanism
      4. 1.11.4 Class-II Four-Bar Linkage
    12. 1.12 Inversion of Mechanisms
      1. 1.12.1 Inversions of a Four-Bar Chain
      2. 1.12.2 Inversions of a Single Slider in Crank Chain
    13. 1.13 Double Slider-Crank Chain
      1. 1.13.1 Inversions of Double Slider–Crank Chain
    14. Summary for Quick Revision
    15. Multiple Choice Questions
    16. Review Questions
    17. Exercises
  10. Chapter 2. Velocity in Mechanisms
    1. 2.1 Introduction
    2. 2.2 Velocity Diagrams
    3. 2.3 Determination of Link Velocities
      1. 2.3.1 Relative Velocity Method
      2. 2.3.2 Relative Velocity of Points in a Kinematic Link
      3. 2.3.3 Relative Angular Velocities
      4. 2.3.4 Relative Velocity of Points on the Same Link
      5. 2.3.5 Forces in a Mechanism
      6. 2.3.6 Mechanical Advantage
      7. 2.3.7 Four-Bar Mechanism
      8. 2.3.8 Slider–Crank Mechanism
      9. 2.3.9 Crank and Slotted Lever Mechanism
      10. 2.3.10 Drag Mechanism
      11. 2.3.11 Whitworth Quick-Return Motion Mechanism
      12. 2.3.12 Stone Crusher Mechanism
    4. 2.4 Instantaneous Centre Method
      1. 2.4.1 Velocity of a Point on a Link
      2. 2.4.2 Properties of Instantaneous Centre
      3. 2.4.3 Number of Instantaneous Centres
      4. 2.4.4 Types of Instantaneous Centres
      5. 2.4.5 Location of Instantaneous Centres
      6. 2.4.6 Arnold–Kennedy Theorem
      7. 2.4.7 Method of Locating Instantaneous Centres
      8. 2.4.8 Determination of Angular Velocity of a Link
    5. 2.5 Complex Mechanisms
      1. 2.5.1 Low Degree of Complexity
      2. 2.5.2 High Degree of Complexity
    6. Summary for Quick Revision
    7. Multiple Choice Questions
    8. Review Questions
    9. Exercises
  11. Chapter 3. Acceleration in Mechanisms
    1. 3.1 Introduction
    2. 3.2 Acceleration of a Body Moving in a Circular Path
    3. 3.3 Acceleration Diagrams
      1. 3.3.1 Total Acceleration of a Link
      2. 3.3.2 Acceleration of a Point on a Link
      3. 3.3.3 Absolute Acceleration for a Link
      4. 3.3.4 Acceleration Centre
      5. 3.3.5 Acceleration Diagram for Four-Bar Mechanism
      6. 3.3.6 Four-Bar Mechanism with Ternary Link
      7. 3.3.7 Acceleration Diagram for Slider–Crank Mechanism
    4. 3.4 Coriolis Acceleration
    5. 3.5 Link Sliding in a Swivelling Pin
    6. 3.6 Klein’s Construction
    7. 3.7 Analytical Analysis of Slider–Crank Mechanism
    8. Summary for Quick Revision
    9. Multiple Choice Questions
    10. Review Questions
    11. Exercises
  12. Chapter 4. Mechanisms with Lower Pairs
    1. 4.1 Introduction
    2. 4.2 Pantograph
    3. 4.3 Straight Line Motion Mechanisms
      1. 4.3.1 Accurate Straight Line Motion Mechanisms
      2. 4.3.2 Approximate Straight Line Motion Mechanisms
    4. 4.4 Intermittent Motion Mechanisms
    5. 4.5 Parallel Linkages
    6. 4.6 Engine Pressure Indicators
      1. 4.6.1 Types of Indicators
    7. 4.7 Automobile Steering Gear Mechanisms
      1. 4.7.1 Fundamental Equation for Correct Steering
      2. 4.7.2 Steering Gears
    8. 4.8 Hooke’s Joint or Universal Coupling
      1. 4.8.1 Velocities of Shafts
      2. 4.8.2 Angular Acceleration of Driven Shaft
    9. 4.9 Double Hooke’s Joint
    10. Summary for Quick Revision
    11. Multiple Choice Questions
    12. Review Questions
    13. Exercises
  13. Chapter 5. Friction
    1. 5.1 Introduction
    2. 5.2 Types of Friction
    3. 5.3 Laws of Friction
    4. 5.4 Definitions
    5. 5.5 Force Analysis of a Sliding Body
    6. 5.6 Screw Threads
    7. 5.7 Screw Jack
    8. 5.8 Friction in Bearings
      1. 5.8.1 Flat Pivot Bearing
      2. 5.8.2 Conical Pivot Bearing
      3. 5.8.3 Truncated Conical Pivot Bearing
      4. 5.8.4 Flat Collar Bearing
    9. 5.9 Rolling Friction
    10. 5.10 Anti-Friction Bearings
    11. 5.11 Friction Circle
    12. 5.12 Film Friction
    13. 5.13 Mitchell (or Tilting Pad) Thrust Bearing
    14. Summary for Quick Revision
    15. Multiple Choice Questions
    16. Review Questions
    17. Exercises
  14. Chapter 6. Belts, Chains and Ropes
    1. 6.1 Introduction
    2. 6.2 Flat Belt Drive
      1. 6.2.1 Angular Velocity Ratio
      2. 6.2.2 Effect of Slip
      3. 6.2.3 Law of Belting
      4. 6.2.4 Length of Open Belt
      5. 6.2.5 Length of Cross Belt
      6. 6.2.6 Angle of Arc of Contact
      7. 6.2.7 Ratio of Belt Tensions
      8. 6.2.8 Power Transmitted
      9. 6.2.9 Centrifugal Tension
      10. 6.2.10 Condition for Maximum Power Transmission
      11. 6.2.11 Initial Belt Tension
      12. 6.2.12 Effect of Initial Tension on Power Transmission
      13. 6.2.13 Belt Creep
      14. 6.2.14 Crowning of Pulleys
      15. 6.2.15 Cone Pulleys
      16. 6.2.16 Compound Belt Drive
    3. 6.3 V-Belt Drive
      1. 6.3.1 Ratio of Belt Tensions
    4. 6.4 Chain Drive
      1. 6.4.1 Chain Pitch
      2. 6.4.2 Chain Length
    5. 6.5 Rope Drive
      1. 6.5.1 Ratio of Tensions
    6. Summary for Quick Revision
    7. Multiple Choice Questions
    8. Review Questions
    9. Exercises
  15. Chapter 7. Brakes, Clutches, and Dynamometers
    1. 7.1 Introduction
    2. 7.2 Brakes
      1. 7.2.1 Block or Shoe Brake
      2. 7.2.2 Band Brake
      3. 7.2.3 Band and Block Brake
      4. 7.2.4 Internal Expanding Shoe Brake
      5. 7.2.5 Braking of a Vehicle
    3. 7.3 Clutches
      1. 7.3.1 Single-Plate Clutch
      2. 7.3.2 Multi-Plate Clutch
      3. 7.3.3 Cone Clutch
    4. 7.4 Dynamometers
      1. 7.4.1 Absorption Dynamometers
      2. 7.4.2 Transmission Dynamometers
    5. Summary for Quick Revision
    6. Multiple Choice Questions
    7. Review Questions
    8. Exercises
  16. Chapter 8. Cams
    1. 8.1 Introduction
    2. 8.2 Classification of Cams
    3. 8.3 Types of Followers
    4. 8.4 Cam Nomenclature
    5. 8.5 Follower Motions
      1. 8.5.1 Simple Harmonic Motion (SHM)
      2. 8.5.2 Motion with Uniform Acceleration and Deceleration
      3. 8.5.3 Motion with Uniform Velocity
      4. 8.5.4 Parabolic Motion
      5. 8.5.5 Cycloidal Motion
    6. 8.6 Cam Profile with Knife-Edge Follower
      1. 8.6.1 Radial Knife-Edge Follower
      2. 8.6.2 Offset Knife-Edge Follower
    7. 8.7 Cam Profile with Roller Follower
      1. 8.7.1 Radial Roller Follower
      2. 8.7.2 Offset Roller Follower
    8. 8.8 Cam Profile with Translational Flat-Faced Follower
    9. 8.9 Cam Profile with Swinging Roller Follower
    10. 8.10 Cam Profile with Swinging Flat-Faced Follower
    11. 8.11 Analytical Methods
      1. 8.11.1 Tangent Cam with Roller Follower
      2. 8.11.2 Circular Arc Cam Operating Flat-Faced Follower
      3. 8.11.3 Circular Cam with Roller Follower
    12. 8.12 Radius of Curvature and Undercutting
      1. 8.12.1 Kloomok and Muffley Method
      2. 8.12.2 Pressure Angle
    13. 8.13 Cam Size
    14. Summary for Quick Revision
    15. Multiple Choice Questions
    16. Review Questions
    17. Exercises
  17. Chapter 9. Governors
    1. 9.1 Introduction
    2. 9.2 Types of Governors
    3. 9.3 Terminology
    4. 9.4 Centrifugal Governors
      1. 9.4.1 Simple Watt Governor
      2. 9.4.2 Gravity-Loaded Type Governors
      3. 9.4.3 Spring-Loaded Governors
      4. 9.4.4 Inertia Governor
    5. 9.5 Performance of Governors
      1. 9.5.1 Definitions
      2. 9.5.2 Effort and Power of a Porter Governor
      3. 9.5.3 Quality of a Governor
      4. 9.5.4 Controlling Force
      5. 9.5.5 Coefficient of Insensitiveness
    6. Summary for Quick Revision
    7. Multiple Choice Questions
    8. Review Questions
    9. Exercises
  18. Chapter 10. Inertia Force and Turning Moment
    1. 10.1 Introduction
    2. 10.2 Motion Analysis of Reciprocating Mechanism
      1. 10.2.1 Velocity and Acceleration of Piston
      2. 10.2.2 Angular Velocity and Acceleration of Connecting Rod
    3. 10.3 Inertia Forces in the Reciprocating Engine
      1. 10.3.1 Analytical Method
      2. 10.3.2 Graphical Method
    4. 10.4 Equilibrium of Forces in Slider Crank Chain
      1. 10.4.1 Piston Effort (or Effective Driving Force)
      2. 10.4.2 Piston Effort for Various Types of Engines
    5. 10.5 Crank Effort (or Turning Moment) Diagrams
      1. 10.5.1 Procedure for Determination of Turning Moment Diagram
      2. 10.5.2 Turning Moment Diagram for a Vertical Steam Engine
      3. 10.5.3 Turning Moment Diagram for a Four Stoke I.C. Engine
      4. 10.5.4 Turning Moment Diagram for a Multicylinder Engine
      5. 10.5.5 Uses of Turning Moment Diagram
    6. 10.6 Fluctuation of Energy
      1. 10.6.1 Determination of Maximum Fluctuation of Energy
    7. 10.7 Flywheel
      1. 10.7.1 Size of Flywheel
      2. 10.7.2 Flywheel for a Punching Press
    8. 10.8 Equivalent Dynamical System
      1. 10.8.1 Compound Pendulum
    9. Summary for Quick Revision
    10. Multiple Choice Questions
    11. Review Questions
    12. Exercises
  19. Chapter 11. Static and Dynamic Force Analysis
    1. 11.1 Introduction
    2. 11.2 Static Force Analysis
      1. 11.2.1 Static Equilibrium
      2. 11.2.2 Equilibrium of Members
      3. 11.2.3 Force Convention
      4. 11.2.4 Free Body Diagrams
      5. 11.2.5 Principle of Superposition
      6. 11.2.6 Static Force Analysis of Four-Bar Mechanism
      7. 11.2.7 Static Force Analysis of Slider–Crank Mechanism
      8. 11.2.8 Static Force Analysis of Shaper Mechanism
    3. 11.3 Dynamic Force Analysis
      1. 11.3.1 D’ Alembert’s Principle
      2. 11.3.2 Equivalent Offset Inertia Force
      3. 11.3.3 Dynamic Force Analysis of Four-Bar Mechanism
      4. 11.3.4 Dynamic Force Analysis of Slider–Crank Mechanism
      5. 11.3.5 Static and Inertia Force Analysis of Shaper Mechanism
    4. Summary for Quick Revision
    5. Multiple Choice Questions
    6. Review Questions
    7. Exercises
  20. Chapter 12. Balancing
    1. 12.1 Introduction
    2. 12.2 Balancing of Rotating Masses
      1. 12.2.1 Single Rotating Mass
      2. 12.2.2 Many Masses Rotating in the Same Plane
      3. 12.2.3 Many Masses Rotating in Different Planes
      4. 12.2.4 Analytical Method for Balancing of Rotating Masses
    3. 12.3 Reciprocating Masses
      1. 12.3.1 Reciprocating Engine
      2. 12.3.2 Partial Primary Balance
    4. 12.4 Balancing of Locomotives
      1. 12.4.1 Partial Balancing of Uncoupled Locomotives
      2. 12.4.2 Effects of Partial Balancing in Locomotives
    5. 12.5 Coupled Locomotives
    6. 12.6 Multicylinder In-Line Engines
      1. 12.6.1 Primary Balancing
      2. 12.6.2 Secondary Balancing
      3. 12.6.3 In-Line Two-Cylinder Engine
      4. 12.6.4 In-Line Four-Cylinder Four-Stroke Engine
    7. 12.7 Balancing of Radial Engines
      1. 12.7.1 Direct and Reverse Cranks Method
    8. 12.8 Balancing of V-Engines
    9. 12.9 Balancing of Rotors
      1. 12.9.1 Static Balance
      2. 12.9.2 Dynamic Balance
      3. 12.9.3 Flexible Rotor Balancing
      4. 12.9.4 Balancing Machines
    10. Summary for Quick Revision
    11. Multiple Choice Questions
    12. Review Questions
    13. Exercises
  21. Chapter 13. Gyroscopic and Precessional Motion
    1. 13.1 Introduction
    2. 13.2 Precessional Motion
    3. 13.3 Fundamentals of Gyroscopic Motion
    4. 13.4 Gyroscopic Couple of a Plane Disc
    5. 13.5 Effect of Gyroscopic Couple on Bearings
    6. 13.6 Gyroscopic Couple on an Aeroplane
    7. 13.7 Gyroscopic Effects on a Naval Ship
      1. 13.7.1 Ship Stabilization
    8. 13.8 Stability of a Four-Wheel Vehicle Taking a Turn
    9. 13.9 Stability of a Two-Wheel Vehicle Taking a Turn
    10. 13.10 Effect of Precession on a Disc Fixed Rigily at a Certain Angle to a Rotating Shaft
    11. 13.11 Gyroscopic Analysis of a Grinding Mill
    12. Summary for Quick Revision
    13. Multiple Choice Questions
    14. Review Questions
    15. Exercises
  22. Chapter 14. Gears
    1. 14.1 Introduction
    2. 14.2 Classification of Gears
    3. 14.3 Gear Terminology
    4. 14.4 Fundamental Law of Gearing
    5. 14.5 Sliding Velocity Between Gear Teeth
    6. 14.6 Gear Tooth Forms
      1. 14.6.1 Involute Tooth Profile
      2. 14.6.2 Cycloidal Tooth Profile
      3. 14.6.3 Comparison Between Involute and Cycloidal Tooth Profiles
    7. 14.7 Construction of an Involute
    8. 14.8 Involute Function
    9. 14.9 Involutometry
    10. 14.10 Involute Gear Tooth Action
    11. 14.11 Characteristics of Involute Action
    12. 14.12 Interference and Undercutting in Involute Gear Teeth
    13. 14.13 Minimum Number of Teeth
      1. 14.13.1 Gear Wheel
      2. 14.13.2 Pinion
      3. 14.13.3 Rack and Pinion
    14. 14.14 Gear Standardization
    15. 14.15 Effect of Centre Distance Variation on Velocity Ratio
    16. 14.16 Determination of Backlash
    17. 14.17 Internal Spur Gears
    18. 14.18 Helical Gears
    19. 14.19 Comparison Between Spur and Helical Gears
    20. 14.20 Helical Gear Terminology
    21. 14.21 Angle Relationships in Helical Gears
    22. 14.22 Virtual Number of Teeth
    23. 14.23 Forces in Helical Gears
    24. 14.24 Parallel Helical Gears
    25. 14.25 Crossed Helical Gears
    26. 14.26 Herringbone Gears
    27. 14.27 Bevel Gears
    28. 14.28 Spiral Gears
      1. 14.28.1 Efficiency of Spiral Gears
    29. 14.29 Worm Gears
      1. 14.29.1 Efficiency of Worm Gears
    30. Summary for Quick Revision
    31. Multiple Choice Questions
    32. Review Questions
    33. Exercises
  23. Chapter 15. Gear Trains
    1. 15.1 Introduction
    2. 15.2 Types of Gear Trains
    3. 15.3 Determination of Speed Ratio of Planetary Gear Trains
    4. 15.4 Sun and Planet Gears
    5. 15.5 Epicyclics with Two Inputs
    6. 15.6 Compound Epicyclic Gear Train
    7. 15.7 Epicyclic Bevel Gear Trains
    8. 15.8 Torque in Epicyclic Gear Trains
    9. Summary for Quick Revision
    10. Multiple Choice Questions
    11. Review Questions
    12. Exercises
  24. Chapter 16. Kinematic Synthesis of Planar Mechanisms
    1. 16.1 Introduction
    2. 16.2 Movability (or Mobility) or Number Synthesis
    3. 16.3 Transmission Angle
      1. 16.3.1 Transmission Angle in Slider-Crank Mechanism
    4. 16.4 Limit Positions and Dead Centres of a Four-Bar Mechanism
    5. 16.5 Dimensional Synthesis
    6. 16.6 Graphical Method
      1. 16.6.1 Pole
      2. 16.6.2 Relative Pole
    7. 16.7 Design of Mechanisms by Relative Pole Method
      1. 16.7.1 Four-Bar Mechanism
      2. 16.7.2 Slider–Crank Mechanism
    8. 16.8 Errors in Kinematic Synthesis of Mechanisms
    9. 16.9 Analytical Method
      1. 16.9.1 Function Generation
      2. 16.9.2 Chebyshev’s Spacing for Precision Points
      3. 16.9.3 Graphical Method to Locate Precision Points
      4. 16.9.4 Freudenstein’s Equation for the Precision Points
    10. 16.10 Freudenstein’s Equation for Slider–Crank Mechanism for Three Precision Points
    11. 16.11 Least Square Technique
    12. Summary for Quick Revision
    13. Multiple Choice Questions
    14. Review Questions
    15. Exercises
  25. Chapter 17. Mechanical Vibrations
    1. 17.1 Introduction
    2. 17.2 Definitions
    3. 17.3 Types of Free Vibrations
    4. 17.4 Basic Elements of Vibrating System
    5. 17.5 Degrees of Freedom
    6. 17.6 Simple Harmonic Motion
    7. 17.7 Free Longitudinal Vibrations
      1. 17.7.1 Solution Methods
      2. 17.7.2 Single Degree of Freedom System
      3. 17.7.3 Effect of the Spring Mass
      4. 17.7.4 Equivalent Stiffness of Springs
      5. 17.7.5 Damped Free Vibrations
      6. 17.7.6 Logarithmic Decrement
      7. 17.7.7 Undamped Forced Vibrations
      8. 17.7.8 Damped Forced Vibrations
      9. 17.7.9 Rotating Unbalance
      10. 17.7.10 Reciprocating Unbalance
      11. 17.7.11 Vibration Isolation
      12. 17.7.12 Support Motion
    8. 17.8 Transverse Vibrations
      1. 17.8.1 Beam Carrying Single Concentrated Load
      2. 17.8.2 Beam Carrying Uniformly Distributed Load
      3. 17.8.3 Shaft Carrying Several Loads
    9. 17.9 Critical Speed
      1. 17.9.1 Shaft Having a Single Disc
    10. 17.10 Torsional Vibrations
      1. 17.10.1 Undamped Free Vibration
      2. 17.10.2 Damped Free Vibration
      3. 17.10.3 Damped Forced Vibration
      4. 17.10.4 Stepped Shaft
      5. 17.10.5 Fixed Shaft with a Rotor
      6. 17.10.6 Two-Degree of Freedom System
      7. 17.10.7 Two Rotor System
      8. 17.10.8 Three Rotor System
    11. 17.11 Geared System
    12. Summary for Quick Revision
    13. Multiple Choice Questions
    14. Review Questions
    15. Exercises
  26. Chapter 18. Automatic Control
    1. 18.1 Introduction
    2. 18.2 Definitions
    3. 18.3 Transducers and Sensors
      1. 18.3.1 Transducer Types
    4. 18.4 Actuators
    5. 18.5 Block Diagrams
    6. 18.6 System Modeling
    7. 18.7 System Response
      1. 18.7.1 Transient-Response Specification
    8. 18.8 Test Signals
    9. 18.9 Output Response of First Order Systems
      1. 18.9.1 Linear Systems
      2. 18.9.2 Step Input
      3. 18.9.3 Ramp Input
      4. 18.9.4 Sinusoidal Excitation
      5. 18.9.5 Torsional System
    10. 18.10 Output Response of Second Order Linear Systems
      1. 18.10.1 Free Response
      2. 18.10.2 Step Input
      3. 18.10.3 Sinusoidal Input
    11. 18.11 Second Order Torsional Systems
      1. 18.11.1 Step Displacement Input
      2. 18.11.2 Ramp Displacement Input
      3. 18.11.3 Harmonic Input
      4. 18.11.4 Step Velocity Input with Error Rate Damping (Derivative Control)
      5. 18.11.5 Step Velocity Input with Integral Control
    12. 18.12 Transfer Function Method
      1. 18.12.1 Transfer Function of First Order Systems
      2. 18.12.2 Transfer Function of Second Order Systems
      3. 18.12.3 Step Input to First Order System
      4. 18.12.4 Ramp Input to First Order System
      5. 18.12.5 Step Input to Second Order System
      6. 18.12.6 Ramp Input to Second Order System
    13. 18.13 Frequency Response of the System
      1. 18.13.1 Frequency Response of First Order Systems
      2. 18.13.2 Frequency Response of Second Order Systems
    14. 18.14 Control Systems
    15. 18.15 Transfer Function for a System with Viscous Damped Output
    16. 18.16 Transfer Function of Torsional System
    17. 18.17 Equivalence of Transfer Functions
    18. 18.18 The Controllers
    19. Summary for Quick Revision
    20. Multiple Choice Questions
    21. Review Questions
    22. Exercises
  27. Appendix A–1 Machine Theory Laboratory Practice
  28. Appendix A–2 Glossary of Terms
  29. Appendix A–3 Multiple Choice Questions with Explanatory Notes
  30. Appendix A–4 Laplace Transforms
  31. Copyright

Product information

  • Title: Theory of Machines
  • Author(s): Sadhu Singh
  • Release date: December 2011
  • Publisher(s): Pearson India
  • ISBN: 9789332528567