Chapter 8. Observer Bias
The Red Line problem
In Massachusetts, the Red Line is a subway that connects Cambridge and Boston. When I was working in Cambridge I took the Red Line from Kendall Square to South Station and caught the commuter rail to Needham. During rush hour Red Line trains run every 7–8 minutes, on average.
When I arrived at the station, I could estimate the time until the next train based on the number of passengers on the platform. If there were only a few people, I inferred that I just missed a train and expected to wait about 7 minutes. If there were more passengers, I expected the train to arrive sooner. But if there were a large number of passengers, I suspected that trains were not running on schedule, so I would go back to the street level and get a taxi.
While I was waiting for trains, I thought about how Bayesian estimation could help predict my wait time and decide when I should give up and take a taxi. This chapter presents the analysis I came up with.
This chapter is based on a project by Brendan Ritter and Kai Austin, who took a class with me at Olin College. The code in this chapter is available from http://thinkbayes.com/redline.py. The code I used to collect data is in http://thinkbayes.com/redline_data.py. For more information see “Working with the code”.
The model
Before we get to the analysis, we have to make some modeling decisions. First, I will treat passenger arrivals as a Poisson process, which means I assume that passengers are equally likely to ...