Chapter 13. Simulation

In this chapter I describe my solution to a problem posed by a patient with a kidney tumor. I think the problem is important and relevant to patients with these tumors and doctors treating them.

And I think the solution is interesting because, although it is a Bayesian approach to the problem, the use of Bayes’s theorem is implicit. I present the solution and my code; at the end of the chapter I will explain the Bayesian part.

If you want more technical detail than I present here, you can read my paper on this work at http://arxiv.org/abs/1203.6890.

The Kidney Tumor problem

I am a frequent reader and occasional contributor to the online statistics forum at http://reddit.com/r/statistics. In November 2011, I read the following message:

“I have Stage IV Kidney Cancer and am trying to determine if the cancer formed before I retired from the military. ... Given the dates of retirement and detection is it possible to determine when there was a 50/50 chance that I developed the disease? Is it possible to determine the probability on the retirement date? My tumor was 15.5 cm x 15 cm at detection. Grade II.”

I contacted the author of the message and got more information; I learned that veterans get different benefits if it is “more likely than not” that a tumor formed while they were in military service (among other considerations).

Because renal tumors grow slowly, and often do not cause symptoms, they are sometimes left untreated. As a result, doctors can observe the rate ...

Get Think Bayes now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.