June 2022
Beginner to intermediate
630 pages
13h 18m
English
4
In this chapter, you will be using the pandas library to persist your time series DataFrames to a different file format, such as CSV, Excel, and pickle files. When performing analysis or data transformations on DataFrames, you are essentially leveraging pandas' in-memory analytics capabilities, which offer great performance. But being in-memory means that the data can easily be lost since it is not persisting on disk.
When working with DataFrames, there will be a need to persist your data for future retrieval, creating backups, or for sharing your data with others. The pandas library is bundled with a rich set of writer functions to persist your in-memory DataFrames (or series) to disk in various file ...