Skip to Content
Time Series Analysis with Python Cookbook
book

Time Series Analysis with Python Cookbook

by Tarek A. Atwan
June 2022
Beginner to intermediate content levelBeginner to intermediate
630 pages
13h 18m
English
Packt Publishing
Content preview from Time Series Analysis with Python Cookbook

12

Forecasting Using Supervised Machine Learning

In this chapter, you will explore different machine learning (ML) algorithms for time series forecasting. Machine learning algorithms can be grouped into supervised learning, unsupervised learning, and reinforcement learning. This chapter will focus on supervised machine learning. Preparing time series for supervised machine learning is an important phase that you will be introduced to in the first recipe.

Furthermore, you will explore two machine learning libraries: scikit-learn and sktime. scikit-learn is a popular machine learning library in Python that offers a wide range of algorithms for supervised and unsupervised learning and a plethora of tools for data preprocessing, model evaluation, ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Getting Started with Time Series Forecasting in Python

Getting Started with Time Series Forecasting in Python

Marco Peixeiro

Publisher Resources

ISBN: 9781801075541Supplemental Content