Skip to Content
Time Series Forecasting in Python
book

Time Series Forecasting in Python

by Marco Peixeiro
October 2022
Beginner to intermediate
456 pages
12h 12m
English
Manning Publications
Content preview from Time Series Forecasting in Python

4 Modeling a moving average process

This chapter covers

  • Defining a moving average process
  • Using the ACF to identify the order of a moving average process
  • Forecasting a time series using the moving average model

In the previous chapter, you learned how to identify and forecast a random walk process. We defined a random walk process as a series whose first difference is stationary with no autocorrelation. This means that plotting its ACF will show no significant coefficients after lag 0. However, it is possible that a stationary process may still exhibit autocorrelation. In this case, we have a time series that can be approximated by a moving average model MA(q)), an autoregressive model AR(p)), or an autoregressive moving average model ARMA( ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Modern Time Series Forecasting with Python

Modern Time Series Forecasting with Python

Manu Joseph

Publisher Resources

ISBN: 9781617299889Supplemental ContentPublisher SupportOtherPublisher WebsiteSupplemental ContentErrata PagePurchase Link