Rozdział 12. Wskaźniki i ocena klasyfikacji

W tym rozdziale opisane są następujące wskaźniki i narzędzia do oceny jakości modelu: tablica pomyłek, różnego rodzaju oceny, raport klasyfikacyjny i kilka wykresów.

Zostaną one użyte do oceny jakości modelu drzewa decyzyjnego prognozującego szanse przeżycia katastrofy przez pasażerów Titanica.

Tablica pomyłek

Tablica pomyłek może pomóc w zrozumieniu działania klasyfikatora.

Klasyfikator binarny generuje cztery rodzaje wyników: prawdziwie pozytywne (PP), prawdziwie negatywne (PN), fałszywie pozytywne (FP) i fałszywie negatywne (FN). Pierwsze dwa rodzaje oznaczają poprawne klasyfikacje.

Poniżej opisany jest często stosowany przykład ułatwiający zrozumienie powyższych rodzajów wyników. Zakładając, że ...

Get Uczenie maszynowe w Pythonie now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.