Rozdział 4. Uczenie modeli

Dotychczas traktowaliśmy modele uczenia maszynowego i ich algorytmy uczące niczym czarne skrzynki. Jeśli poświęciłaś/poświęciłeś czas na ćwiczenia umieszczone w poprzednich rozdziałach, dziwisz się zapewne, jak wiele możemy dokonać, nie znając podstaw działania modelu: zoptymalizować system regresyjny, usprawnić klasyfikator rozpoznawania cyfr, a nawet stworzyć od podstaw filtr spamu — wszystko to bez wiedzy na temat tworzących je mechanizmów. Faktycznie, w wielu przypadkach nie musimy znać szczegółów implementacji.

Jednak znajomość architektury modelu pomaga się w nim odnaleźć, dobrać właściwy algorytm uczący oraz zestaw hiperparametrów. Ułatwia nam to również usuwanie usterek z kodu, a także poprawia naszą skuteczność ...

Get Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.