To Be (a Module) or Not to Be?
When system programmers want to add new functionality to the Linux kernel, they are faced with a basic decision: should they write the new code so that it will be compiled as a module, or should they statically link the new code to the kernel?
As a general rule, system programmers tend to implement new code as a module. Because modules can be linked on demand (as we see later), the kernel does not have to be bloated with hundreds of seldom-used programs. Nearly every higher-level component of the Linux kernel—filesystems, device drivers, executable formats, network layers, and so on—can be compiled as a module. Linux distributions use modules extensively in order to support in a seamless way a wide range of hardware devices. For instance, the distribution puts tens of sound card driver modules in a proper directory, although only one of these modules will be effectively loaded on a specific machine.
However, some Linux code must necessarily be linked statically, which means that either the corresponding component is included in the kernel or it is not compiled at all. This happens typically when the component requires a modification to some data structure or function statically linked in the kernel.
For example, suppose the component has to introduce new fields
into the process descriptor. Linking a module cannot change an already
defined data structure such as task_struct
because, even if the module uses its modified version of the data structure, all ...
Get Understanding the Linux Kernel, 3rd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.