Book description
일상생활에 보편화된 인공지능 시스템은 자율 주행차, 음성 어시스턴트, 얼굴 인식 장치 등 다양한 곳에 활용된다. 인공지능의 발전과 더불어 인공지능 시스템을 속이려는 공격자가 곳곳에 도사리고 있으며, 의도적으로 시스템을 속이기 위한 악의적인 데이터가 만들어지고 있다. 이러한 데이터는 각종 데이터 속에 숨어서 다양한 방법으로 인공지능을 속인다. 이 책은 인공지능 시스템을 속이는 적대적 공격을 소개한다. 공격자가 시스템을 공격하는 동기를 파악하고 적대적 공격의 위험성을 알아본다. 또한 적대적 공격이 이미지, 오디오, 비디오 데이터를 활용해 인공지능을 속이는 실제 사례를 살펴본다. 신경망을 공격하는 방법과 공격을 방어하는 방법을 이해하며 인공지능 분야가 나아갈 미래를 알아보자.
Table of contents
Product information
- Title: 안전한 인공지능 시스템을 위한 심층 신경망 강화
- Author(s):
- Release date: December 2020
- Publisher(s): Hanbit Media, Inc.
- ISBN: 9791162247372
You might also like
book
핸즈온 머신러닝: 사이킷런과 텐서플로를 활용한 머신러닝, 딥러닝 실무
최근의 눈부신 혁신들로 딥러닝은 머신러닝 분야 전체를 뒤흔들고 있습니다. 이제 이 기술을 거의 모르는 프로그래머도 데이터로부터 …
book
파이썬을 활용한 베이지안 통계 (2판)
베이지안 통계를 마주하는 데는 프로그래밍으로 충분하다. 이 책을 읽고 나면 통계 문제를 수식 대신 파이썬 코드로, …
book
실무자를 위한 그래프 데이터 활용법
데이터는 점점 더 방대하고 복잡해지고 있다. 넘쳐나는 데이터의 홍수 속에서 구원의 손길을 바라는 이가 있다면 바로 …
book
머신러닝 시스템 설계
머신러닝 시스템 개발은 선형이 아닌 순환 프로세스다. 모델을 개발해 배포하고 나서도 끊임없는 모니터링과 업데이트가 필요하다. 이 …