Using HPC for Computational Fluid Dynamics

Book description

Using HPC for Computational Fluid Dynamics: A Guide to High Performance Computing for CFD Engineers offers one of the first self-contained guides on the use of high performance computing for computational work in fluid dynamics.

Beginning with an introduction to HPC, including its history and basic terminology, the book moves on to consider how modern supercomputers can be used to solve common CFD challenges, including the resolution of high density grids and dealing with the large file sizes generated when using commercial codes.

Written to help early career engineers and post-graduate students compete in the fast-paced computational field where knowledge of CFD alone is no longer sufficient, the text provides a one-stop resource for all the technical information readers will need for successful HPC computation.



  • Offers one of the first self-contained guides on the use of high performance computing for computational work in fluid dynamics
  • Tailored to the needs of engineers seeking to run CFD computations in a HPC environment

Table of contents

  1. Cover image
  2. Title page
  3. Table of Contents
  4. Copyright
  5. Dedication
  6. Preface
  7. Chapter 1. Introduction to CFD
    1. 1. Colorful Dynamics or Computational Fluid Dynamics?
    2. 2. Clearing Misconceptions about CFD
    3. 3. CFD Insight
    4. 4. Methods of Discretization
    5. 5. Turbulence Should Not Be Taken for Granted
    6. 6. Technological Innovations
  8. Chapter 2. Introduction to High-Performance Computing
    1. 1. A Short History
    2. 2. High-Performance Computing
    3. 3. Top Five Supercomputers of the World
    4. 4. Some Basic but Important Terminology Used in HPC
  9. Chapter 3. The Way the HPC Works in CFD
    1. 1. Introduction
    2. 2. Oldest Form of Parallel Computing
    3. 3. High-Performance Computing Solver Platform
    4. 4. Amdahl's Law
    5. 5. Data Handling and Storage
    6. 6. Treatment of CFD Algorithms for Parallel Processing
    7. 7. Solving Partial Differential Equations
    8. 8. Modern Methods of Mesh Partitioning
  10. Chapter 4. High Reynolds Number Flows
    1. 1. Universality of Turbulence
    2. 2. Direct Numerical Simulation
    3. 3. Large Eddy Simulation
    4. 4. Detached Eddy Simulation
  11. Chapter 5. Cluster Classification
    1. 1. Classification of Clusters
    2. 2. Some Useful Terminology
  12. Chapter 6. HPC Benchmarks for CFD
    1. 1. How Big Should the Problem Be?
    2. 2. Maximum capacity of the critical components of a cluster
    3. 3. Commercial Software Benchmarks
    4. 4. OpenFOAM® Benchmarking
    5. 5. Case Studies of Some Renowned Clusters
    6. 6. Conclusion
  13. Chapter 7. Networking and Remote Access
    1. 1. Transmission Control Protocol/Internet Protocol
    2. 2. Secure SHell
    3. 3. WinSCP
    4. 4. Running ANSYS FLUENT in an WinHPC Environment
  14. Chapter 8. Graphics Processing Unit Technology
    1. 1. Introduction to Graphics Processing Unit
    2. 2. Inside a GPU
    3. 3. Nvidia Series
    4. 4. Compute Unified Device Architecture
    5. 5. GPUs in CFD
    6. 6. Computational Flow Dynamics Coding on GPUs
    7. 7. Final Remarks
  15. Index

Product information

  • Title: Using HPC for Computational Fluid Dynamics
  • Author(s): Shamoon Jamshed
  • Release date: May 2015
  • Publisher(s): Academic Press
  • ISBN: 9780128017517