Book description
A visual approach to data mining.
Data mining has been defined as the search for useful and previously unknown patterns in large datasets, yet when faced with the task of mining a large dataset, it is not always obvious where to start and how to proceed.
This book introduces a visual methodology for data mining demonstrating the application of methodology along with a sequence of exercises using VisMiner. VisMiner has been developed by the author and provides a powerful visual data mining tool enabling the reader to see the data that they are working on and to visually evaluate the models created from the data.
Key features:
Presents visual support for all phases of data mining including dataset preparation.
Provides a comprehensive set of non-trivial datasets and problems with accompanying software.
Features 3-D visualizations of multi-dimensional datasets.
Gives support for spatial data analysis with GIS like features.
Describes data mining algorithms with guidance on when and how to use.
Accompanied by VisMiner, a visual software tool for data mining, developed specifically to bridge the gap between theory and practice.
Visual Data Mining: The VisMiner Approach is designed as a hands-on work book to introduce the methodologies to students in data mining, advanced statistics, and business intelligence courses. This book provides a set of tutorials, exercises, and case studies that support students in learning data mining processes.
In praise of the VisMiner approach:
"What we discovered among students was that the visualization concepts and tools brought the analysis alive in a way that was broadly understood and could be used to make sound decisions with greater certainty about the outcomes"—Dr. James V. Hansen, J. Owen Cherrington Professor, Marriott School, Brigham Young University, USA
"Students learn best when they are able to visualize relationships between data and results during the data mining process. VisMiner is easy to learn and yet offers great visualization capabilities throughout the data mining process. My students liked it very much and so did I." —Dr. Douglas Dean, Assoc. Professor of Information Systems, Marriott School, Brigham Young University, USA
Table of contents
- Cover
- Title Page
- Copyright
- Preface
- Acknowledgments
- Chapter 1: Introduction
- Chapter 2: Initial Data Exploration and Dataset Preparation Using VisMiner
- Chapter 3: Advanced Topics in Initial Exploration and Dataset Preparation Using VisMiner
- Chapter 4: Prediction Algorithms for Data Mining
- Chapter 5: Classification Models in VisMiner
-
Chapter 6: Regression Analysis
- The Regression Model
- Correlation and Causation
- Algorithms for Regression Analysis
- Assessing Regression Model Performance
- Model Validity
- Looking Beyond R2
- Polynomial Regression
- Artificial Neural Networks for Regression Analysis
- Dataset Preparation
- Tutorial
- A Regression Model for Home Appraisal
- Modeling with the Right Set of Observations
- ANN Modeling
- The Advantage of ANN Regression
- Top-Down Attribute Selection
- Issues in Model Interpretation
- Model Validation
- Model Application
- Summary
-
Chapter 7: Cluster Analysis
- Introduction
- Algorithms for Cluster Analysis
- Issues with K-Means Clustering Process
- Hierarchical Clustering
- Measures of Cluster and Clustering Quality
- Silhouette Coefficient
- Correlation Coefficient
- Self-Organizing Maps (SOM)
- Self-Organizing Maps in VisMiner
- Choosing the Grid Dimensions
- Advantages of a 3-D Grid
- Extracting Subsets from a Clustering
- Summary
- Appendix A: VisMiner Reference by Task
- Appendix B: VisMiner Task/Tool Matrix
- Appendix C: IP Address Look-up
- Index
Product information
- Title: Visual Data Mining: The VisMiner Approach, 2nd Edition
- Author(s):
- Release date: December 2012
- Publisher(s): Wiley
- ISBN: 9781119967545
You might also like
book
Data Mining Models, Second Edition
Data mining has become the fastest growing topic of interest in business programs in the past …
book
Data Mining and Learning Analytics
Addresses the impacts of data mining on education and reviews applications in educational research teaching, and …
book
Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R
A novel presentation of rank and permutation tests, with accessible guidance to applications in R Nonparametric …
book
Random Data: Analysis and Measurement Procedures, Fourth Edition
A timely update of the classic book on the theory and application of random data analysis …