4.9 Error Concealment Using a DVC Approach for Video Streaming Applications
(Portions reprinted, with permission, from R. Bernardini, M. Fumagalli, M. Naccari, R. Rinaldo, M. Tagliasacchi, S. Tubaro, P. Zontone, “Error concealment using a DVC approach for video streaming applications”, EURASIP European Signal Processing Conference, Poznan, Poland, September 2007. ©2007 EURASIP.)
The general framework proposed in [34] considers an MPEG-coded video bitstream which is sent over an error-prone channel with little or no protection; an auxiliary bitstream, generated using Wyner–Ziv coding, is sent for error resilience. At the decoder side, the error-concealed decoded MPEG frame becomes the side information for the Wyner–Ziv decoder, which further enhances the quality of the concealed frame. The auxiliary Wyner–Ziv stream is generated by computing parity bits of a Reed–Solomon code, where the systematic data consists of a downsampled, coarsely-quantized version of the original sequence, together with mode decisions and motion vectors. This scheme works with a fixed rate allocated at the encoder, which does not depend on the actual distortion induced by the channel loss.
If the packet loss rate (PLR) is known, together with the error concealment technique used at the decoder, the ROPE algorithm [35] allows the distortion estimation of a decoded frame without a direct comparison between the original and the decoded signal. In other words, it can estimate, at the encoder side, the expected ...
Get Visual Media Coding and Transmission now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.