Skip to Main Content
Visualizing Quaternions
book

Visualizing Quaternions

by Andrew J. Hanson
February 2006
Intermediate to advanced content levelIntermediate to advanced
600 pages
8h 57m
English
Elsevier Science
Content preview from Visualizing Quaternions

Chapter 31. Clifford Algebras

The quaternion-based formalism for handling and visualizing rotations works well in dimensions 2, 3, and 4 because in these dimensions the Spin group (the double covering of the orthogonal group) has simple topology and geometry. It would be natural to expect that this simplicity continues to hold for rotations in any dimension, and that all of our 3D intuitions about labeling frames, interpolating frames, and simple frame-to-frame distance measures continue to be valid. Unfortunately, that is not the case: quaternions are quite unique to 3D, and only a serendipitous accident of topology allows an extension even to 4D.

On the other hand, there is a mathematical formalism that treats N -dimensional rotations in a very ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Mathematics

Advanced Mathematics

Stanley J. Farlow
Geometry for Programmers

Geometry for Programmers

Oleksandr Kaleniuk
Geometric Algebra for Computer Science

Geometric Algebra for Computer Science

Leo Dorst, Daniel Fontijne, Stephen Mann

Publisher Resources

ISBN: 9780120884001