Book description
For years, organizations have struggled to move data science, machine learning, and AI projects from the realm of experimental to having real business impact. One reason is because pivoting operations around these technologies involves more than just technology--the orchestration of people and processes is also critically important. In the wake of the global health crisis, the need for structure around building and maintaining machine learning models (much less tens, hundreds, or thousands of them) has only grown.
With this report, business leaders will learn about MLOps, a process for generating long-term value while reducing the risk associated with data science, ML, and AI projects. Authors Lynn Heidmann and Mark Treveil from Dataiku start by introducing the data science-ML-AI project lifecycle to help you understand what--and who--drives these projects.
You'll explore:
- Detailed components of ML model building, including how business insights can provide value to the technical team
- Monitoring and iteration steps in the AI project lifecycle--and the role business plays in both processes
- How components of a modern AI governance strategy are intertwined with MLOps
- Guidelines for aligning people, defining processes, and assembling the technology necessary to get started with MLOps
Table of contents
- 1. Introduction to MLOps and the AI Life Cycle
- 2. Developing and Deploying Models
- 3. Model Monitoring and Iteration
- 4. Governance
- 5. Get Started with MLOps
Product information
- Title: What Is MLOps?
- Author(s):
- Release date: November 2020
- Publisher(s): O'Reilly Media, Inc.
- ISBN: 9781492093619
You might also like
video
Python Fundamentals
51+ hours of video instruction. Overview The professional programmer’s Deitel® video guide to Python development with …
book
Clean Code: A Handbook of Agile Software Craftsmanship
Even bad code can function. But if code isn't clean, it can bring a development organization …
book
40 Algorithms Every Programmer Should Know
Learn algorithms for solving classic computer science problems with this concise guide covering everything from fundamental …
book
Building Microservices, 2nd Edition
Distributed systems have become more fine-grained as organizations shift from code-heavy monolithic applications to smaller, self-contained …