Gary Rost Bradski

Gary Rost Bradski

Author, Stanford professor, founder of Industrial Perception, OpenCV, computer vision and machine learning.

Palo Alto, California

Areas of Expertise:

  • computer vision
  • machine Learning
  • AI
  • artificial intelligence
  • OpenCV
  • consulting
  • speaking
  • programming
  • training
Gary Rost Bradski is a consulting professor in the CS department at Stanford University AI Lab where he mentors robotics, machine learning and computer vision research. He co-founded (March 2012) and is CTO at Industrial Perception Inc working on perception systems for industrial robots. Formerly he was Senior Scientist at Willow Garage, a robotics research institute/incubator. He has a BS degree in EECS from U.C. Berkeley and a PhD from Boston University. He has 20 years of industrial experience applying machine learning and computer vision spanning option trading operations at First Union National Bank, to computer vision at Intel Research to machine learning in Intel Manufacturing and several startup companies in between. Gary started the Open Source Computer Vision Library, the statistical Machine Learning Library (MLL comes with OpenCV), and the Probabilistic Network Library (PNL). OpenCV is used around the world in research, government and commercially. The vision libraries helped develop a notable part of the commercial Intel performance primitives library (IPP Gary also organized the vision team for Stanley, the Stanford robot that won the DARPA Grand Challenge autonomous race across the desert for a $2M team prize and helped found the Stanford AI Robotics project at Stanford working with Professor Andrew Ng. Gary has over 50 publications and 13 issued patents with 18 pending. He lives in Palo Alto with his wife and 3 daughters and bikes road or mountains as much as he can.

Learning OpenCV 3 Learning OpenCV 3
by Gary Rost Bradski, Adrian Kaehler
December 2016
Print: $84.99
Ebook: $72.99

Learning OpenCV Learning OpenCV
by Gary Rost Bradski, Adrian Kaehler
September 2008
Print: $49.99
Ebook: $39.99

"...definitely a very useful and highly recommended introduction and reference. "
--David Brenner, Computer Science House

"This book by two leading roboticists is much more than a programming guide for how to call functions in a programming library. You will enjoy the trip through practical application of Computer Vision and the overview of Machine Learning."
--Ira Laefsky,

"...a vital addition to the library of any computer vision practitioner."
--Trevor Darrell, Professor, EECS, UC Berkeley

"The book provides a clearly written introduction and tutorial that makes computer vision applications accessible to a range of new audiences."
--Ken Goldberg, Professor of Engineering, UC Berkeley and Vice-President of Technical Activities, IEEE Robotics and Automation Society

"This book's main job is to provide an introduction to OpenCV. It does that very well. It does something more: it reviews clearly and concisely many of the main concepts in machine vision. The book may be used to support an introductory machine vision course, picking up where the lectures left off and holding the students' hand in bringing what they learned in class to life."
--Professor Pietro Perona, Professor of Electrical Engineering & Computation & Neural Systems, Director of the National Science Foundation Engineering Research Center in Neuromorphic Systems Engineering

"Learning OpenCV provides a conceptual framework for this well-maintained and optimized collection of software, and makes its components accessible through clear background explanations, a thorough yet simple description of the function interfaces, and well chosen, attractive examples. Much more than a user manual, this book would form an excellent basis for a hands-on, introductory course in computer vision."
--Carlo Tomasi, CS Prof. at Duke University

"This highly accessible book should be of great value to anyone interested in building and understanding computer vision applications. It fills an important gap between many more theoretically-oriented textbooks in the field of computer vision, by providing a highly accessible hands-on guide on how to build actual computer vision software. If you are like me, you will find it a pleasure to read, and full of insights. This is a highly practical book."
--Sebastian Thrun, Professor of Computer Science and Electrical Engineering at Stanford University

"Gary Bradski, the primary developer of OpenCV, and co-author Adrian Kaehler, have done an excellent job in writing this book. The chapters are written in a highly user-friendly fashion, with clear explanations and hands-on examples. The book can be used as both a reference book to the OpenCV library as well as a tutorial or text for many fundamental concepts in computer vision. This is a must-have book on any computer vision bookshelf. "
--L. Fei - Fei, Computer Science Dept., Princeton University

"Learning OpenCV will likely occupy a prominent spot on the bookshelf of almost anyone working in computer vision...As readers, we are fortunate to have this chance to learn about OpenCV directly from Gary Bradski, who was the driving force and prime developer behind OpenCV. With his coauthor, Adrian Kaehler, they provide a clear and well-thought-out overview of the entire OpenCV code base, with many simple introductory examples that make it easy to slowly gain expertise with this large library of software. "
--David Lowe, Professor, Computer Science, University of British Columbia

"Gary Bradksi has done the computer vision community a great service by organizing and championing the OpenCV library. This library is useful for practicioners, and is an excellent tool for those entering the field: it is a set of computer vision algorithms that work as advertised."
--Bill Freeman, Professor, EECS, MIT