Skip to Content on-demand course Machine Learning and Data Science with Python: A Complete Beginners Guide May 2019
Beginner to intermediate
10h 19m
English
Closed Captioning available in English Course outline Chapter 1 : Course Overview and Table of Contents 8m
Chapter 2 : Introduction to Machine Learning 10m
Chapter 3 : System and Environment Preparation 14m
Chapter 4 : Learn Basics of Python 35m
Chapter 5 : Learn Basics of NumPy 18m
Chapter 6 : Learn Basics of Matplotlib 7m
Chapter 7 : Learn Basics of Pandas 12m
Chapter 8 : Understanding the CSV Data File 8m
Chapter 9 : Load and Read CSV Data File 18m
Chapter 10 : Dataset Summary 35m
Chapter 11 : Dataset Visualization 30m
Chapter 12 : Data Preparation 51m
Chapter 13 : Feature Selection 52m
Chapter 14 : Refresher Session - the Mechanism of Re-Sampling, Training, and Testing 12m
Chapter 15 : Algorithm Evaluation Techniques 38m
Chapter 16 : Algorithm Evaluation Metrics 1h
Chapter 17 : Classification Algorithm Spot Check - Logistic Regression 11m
Chapter 18 : Classification Algorithm Spot Check - Linear Discriminant Analysis 3m
Chapter 19 : Classification Algorithm Spot Check - K-Nearest Neighbors 4m
Chapter 20 : Classification Algorithm Spot Check - Naive Bayes 4m
Chapter 21 : Classification Algorithm Spot Check – CART 3m
Chapter 22 : Classification Algorithm Spot Check - Support Vector Machines 4m
Chapter 23 : Regression Algorithm Spot Check - Linear Regression 7m
Chapter 24 : Regression Algorithm Spot Check - Ridge Regression 3m
Chapter 25 : Regression Algorithm Spot Check - LASSO Linear Regression 2m
Chapter 26 : Regression Algorithm Spot Check - Elastic Net Regression 2m
Chapter 27 : Regression Algorithm Spot Check - K-Nearest Neighbors 5m
Chapter 28 : Regression Algorithm Spot Check – CART 4m
Chapter 29 : Regression Algorithm Spot Check - Support Vector Machines (SVM) 4m
Chapter 30 : Compare Algorithms - Part 1: Choosing the Best Machine Learning Model 8m
Chapter 31 : Compare Algorithms - Part 2: Choosing the Best Machine Learning Model 5m
Chapter 32 : Pipelines: Data Preparation and Data Modelling 10m
Chapter 33 : Pipelines: Feature Selection and Data Modelling 9m
Chapter 34 : Performance Improvement: Ensembles – Voting 6m
Chapter 35 : Performance Improvement: Ensembles – Bagging 8m
Chapter 36 : Performance Improvement: Ensembles – Boosting 4m
Chapter 37 : Performance Improvement: Parameter Tuning Using Grid Search 7m
Chapter 38 : Performance Improvement: Parameter Tuning Using Random Search 6m
Chapter 39 : Export, Save and Load Machine Learning Models: Pickle 9m
Chapter 40 : Export, Save and Load Machine Learning Models: Joblib 5m
Chapter 41 : Finalizing a Model - Introduction and Steps 6m
Chapter 42 : Finalizing a Classification Model - the Pima Indian Diabetes Dataset 6m
Chapter 43 : Quick Session: Imbalanced Dataset - Issue Overview and Steps 8m
Chapter 44 : Iris Dataset: Finalizing Multi-Class Dataset 9m
Chapter 45 : Finalizing a Regression Model - the Boston Housing Price Dataset 8m
Chapter 46 : Real-Time Predictions: Using the Pima Indian Diabetes Classification Model 6m
Chapter 47 : Real-time Predictions: Using Iris Flowers Multi-Class Classification Dataset 3m
Chapter 48 : Real-Time Predictions: Using the Boston Housing Regression Model 7m
Show More Quick Session: Imbalanced Dataset - Issue Overview and Steps
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month, and much more. Start your free trial