Book description
Leading experts present the latest research results in adaptive signal processing
Recent developments in signal processing have made it clear that significant performance gains can be achieved beyond those achievable using standard adaptive filtering approaches. Adaptive Signal Processing presents the next generation of algorithms that will produce these desired results, with an emphasis on important applications and theoretical advancements. This highly unique resource brings together leading authorities in the field writing on the key topics of significance, each at the cutting edge of its own area of specialty. It begins by addressing the problem of optimization in the complex domain, fully developing a framework that enables taking full advantage of the power of complex-valued processing. Then, the challenges of multichannel processing of complex-valued signals are explored. This comprehensive volume goes on to cover Turbo processing, tracking in the subspace domain, nonlinear sequential state estimation, and speech-bandwidth extension.
Examines the seven most important topics in adaptive filtering that will define the next-generation adaptive filtering solutions
Introduces the powerful adaptive signal processing methods developed within the last ten years to account for the characteristics of real-life data: non-Gaussianity, non-circularity, non-stationarity, and non-linearity
Features self-contained chapters, numerous examples to clarify concepts, and end-of-chapter problems to reinforce understanding of the material
Contains contributions from acknowledged leaders in the field
Includes a Solutions Manual for instructors
Adaptive Signal Processing is an invaluable tool for graduate students, researchers, and practitioners working in the areas of signal processing, communications, controls, radar, sonar, and biomedical engineering.
Note: The ebook version does not provide access to the companion files.
Table of contents
- Cover Page
- Title Page
- Copyright
- CONTENTS
- PREFACE
- CONTRIBUTORS
- CHAPTER 1: COMPLEX-VALUED ADAPTIVE SIGNAL PROCESSING
-
CHAPTER 2: ROBUST ESTIMATION TECHNIQUES FOR COMPLEX-VALUED RANDOM VECTORS
- 2.1 INTRODUCTION
- 2.2 STATISTICAL CHARACTERIZATION OF COMPLEX RANDOM VECTORS
- 2.3 COMPLEX ELLIPTICALLY SYMMETRIC (CES) DISTRIBUTIONS
- 2.4 TOOLS TO COMPARE ESTIMATORS
- 2.5 SCATTER AND PSEUDO-SCATTER MATRICES
- 2.6 ARRAY PROCESSING EXAMPLES
- 2.7 MVDR BEAMFORMERS BASED ON M-ESTIMATORS
- 2.8 ROBUST ICA
- 2.9 CONCLUSION
- 2.10 PROBLEMS
- REFERENCES
-
CHAPTER 3: TURBO EQUALIZATION
- 3.1 INTRODUCTION
- 3.2 CONTEXT
- 3.3 COMMUNICATION CHAIN
- 3.4 TURBO DECODER: OVERVIEW
- 3.5 FORWARD-BACKWARD ALGORITHM
- 3.6 SIMPLIFIED ALGORITHM: INTERFERENCE CANCELER
- 3.7 CAPACITY ANALYSIS
- 3.8 BLIND TURBO EQUALIZATION
- 3.9 CONVERGENCE
- 3.10 MULTICHANNEL AND MULTIUSER SETTINGS
- 3.11 CONCLUDING REMARKS
- 3.12 PROBLEMS
- REFERENCES
- CHAPTER 4: SUBSPACE TRACKING FOR SIGNAL PROCESSING
-
CHAPTER 5: PARTICLE FILTERING
- 5.1 INTRODUCTION
- 5.2 MOTIVATION FOR USE OF PARTICLE FILTERING
- 5.3 THE BASIC IDEA
- 5.4 THE CHOICE OF PROPOSAL DISTRIBUTION AND RESAMPLING
- 5.5 SOME PARTICLE FILTERING METHODS
- 5.6 HANDLING CONSTANT PARAMETERS
- 5.7 RAO-BLACKWELLIZATION
- 5.8 PREDICTION
- 5.9 SMOOTHING
- 5.10 CONVERGENCE ISSUES
- 5.11 COMPUTATIONAL ISSUES AND HARDWARE IMPLEMENTATION
- 5.12 ACKNOWLEDGMENTS
- 5.13 EXERCISES
- REFERENCES
-
CHAPTER 6: NONLINEAR SEQUENTIAL STATE ESTIMATION FOR SOLVING PATTERN-CLASSIFICATION PROBLEMS
- 6.1 INTRODUCTION
- 6.2 BACK-PROPAGATION AND SUPPORT VECTOR MACHINE-LEARNING ALGORITHMS: REVIEW
- 6.3 SUPERVISED TRAINING FRAMEWORK OF MLPs USING NONLINEAR SEQUENTIAL STATE ESTIMATION
- 6.4 THE EXTENDED KALMAN FILTER
- 6.5 EXPERIMENTAL COMPARISON OF THE EXTENDED KALMAN FILTERING ALGORITHM WITH THE BACK-PROPAGATION AND SUPPORT VECTOR MACHINE LEARNING ALGORITHMS
- 6.6 CONCLUDING REMARKS
- 6.7 PROBLEMS
- REFERENCES
- CHAPTER 7: BANDWIDTH EXTENSION OF TELEPHONY SPEECH
- INDEX
Product information
- Title: Adaptive Signal Processing: Next Generation Solutions
- Author(s):
- Release date: March 2010
- Publisher(s): Wiley-IEEE Press
- ISBN: 9780470195178
You might also like
book
Partial-Update Adaptive Signal Processing
Partial-update adaptive signal processing algorithms not only permit significant complexity reduction in adaptive filter implementations, but …
book
Adaptive Learning Methods for Nonlinear System Modeling
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms …
book
Academic Press Library in Signal Processing
This third volume of a five volume set, edited and authored by world leading experts, gives …
book
Academic Press Library in Signal Processing
This first volume, edited and authored by world leading experts, gives a review of the principles, …