3
Autoencoders
In the previous chapter, Chapter 2, Deep Neural Networks, we introduced the concept of deep neural networks. We're now going to move on to look at autoencoders, which are a neural network architecture that attempts to find a compressed representation of the given input data.
Similar to the previous chapters, the input data may be in multiple forms, including speech, text, image, or video. An autoencoder will attempt to find a representation or piece of code in order to perform useful transformations on the input data. As an example, when denoising autoencoders, a neural network will attempt to find a code that can be used to transform noisy data into clean data. Noisy data could be in the form of an audio recording with static ...
Get Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.