CHAPTER 4
INTERPOLATION AND APPROXIMATION
One of the oldest problems in mathematics—and, at the same time, one of the most applied—is the problem of constructing an approximation to a given function f from among simpler functions, typically (but not always) polynomials. A slight variation of this problem is that of constructing a smooth function from a discrete set of data points.
In this chapter we will study both of these problems and develop several methods for solving them. We start with a more general treatment of an idea we first saw in Chapter 2.
4.1 LAGRANGE INTERPOLATION
The basic interpolation problem can be posed in one of two ways:
Note that in the first case we are trying to fit a polynomial to the data, and in the second we are trying to approximate a given function with the interpolating polynomial.
While the two cases are in fact different, we can always consider the first one to be a special case of the second (by taking yi = f(xi), for each i), so we will present most ...
Get An Introduction to Numerical Methods and Analysis, 2nd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.