6 Using information theory with entropy-based policies
This chapter covers
- Entropy as an information-theoretic measure of uncertainty
- Information gain as a method of reducing entropy
- BayesOpt policies that use information theory for their search
We saw in chapter 4 that by aiming to improve from the best value achieved so far, we can design improvement-based BayesOpt policies, such as Probability of Improvement (POI) and Expected Improvement (EI). In chapter 5, we used multi-armed bandit (MAB) policies to obtain Upper Confidence Bound (UCB) and Thompson sampling (TS), each of which uses a unique heuristic to balance exploration and exploitation in the search for the global optimum of the objective function.
In this chapter, we learn about another ...
Get Bayesian Optimization in Action now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.