Contents
1.1.4 Relations between the subjects
1.3 The organization of the book
2 Detection and Classification
2.1.1 Uniform cost function and minimum error rate
2.1.2 Normal distributed measurements; linear and quadratic classifiers
2.2.1 Minimum error rate classification with reject option
2.3 Detection: the two-class case
3.1.3 The Gaussian case with linear sensors
3.1.4 Maximum likelihood estimation
3.1.5 Unbiased linear MMSE estimation
3.2.2 The error covariance of the unbiased linear MMSE estimator
3.3.2 Fitting using a robust error norm
3.4 Overview of the family of estimators
4.1 A general framework for online estimation
4.1.2 Optimal online estimation
4.2 Continuous state variables
4.2.1 Optimal online estimation in linear-Gaussian systems
4.2.2 Suboptimal solutions for nonlinear systems
4.2.3 Other filters for nonlinear systems
Get Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.