Chapter 6: Recurrent Neural Networks for Demand Prediction
We have gathered some experience, by now, with fully connected feedforward neural networks in two variants: implementing a classification task by assigning an input sample to a class in a set of predefined classes or trying to reproduce the shape of an input vector via an autoencoder architecture. In both cases, the output response depends only on the values of the current input vector. At time , the output response, , depends on, and only on, the input vector, , at time . The network has ...
Get Codeless Deep Learning with KNIME now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.