Chapter 30. Huge Cache for MapReduce
This chapter will show how to use and read a huge cache (i.e., composed of billions of key-value pairs that cannot fit in a commodity server’s memory) in MapReduce algorithms. The algorithms presented in this chapter are generic enough to be used in any MapReduce paradigms (such as MapReduce/Hadoop and Spark).
There are some MapReduce algorithms that might require access to some huge (i.e., containing billions of records) static reference relational tables. Typically, these reference relational tables do not change for a long period of time, but they are needed in either the map()
or reduce()
phase of MapReduce programs. One example of such a table is a “position feature” table, which is used for germline1 data type ingestion and variant classification. The position feature table might have the attributes shown in Table 30-1 (a composite key is (chromosome_id
, position
).
Column name | Characteristics |
---|---|
chromosome_id |
Key-1 |
position |
Key-2 |
feature_id |
Basic attribute |
mrna_feature_id |
Basic attribute |
sequence_data_type_id |
Basic attribute |
mapping |
Basic attribute |
In expressing your solution in the MapReduce paradigm, either in map()
or reduce()
, given a key=(chromosome_id, position)
, you want to return a List<String>
where each element of the list comprises the remaining attributes {feature_id, mrna_feature_id, sequence_data_type_id, mapping
}. For the germline data type, a position ...
Get Data Algorithms now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.