8.6 Techniques to Improve Classification Accuracy
In this section, you will learn some tricks for increasing classification accuracy. We focus on ensemble methods. An ensemble for classification is a composite model, made up of a combination of classifiers. The individual classifiers vote, and a class label prediction is returned by the ensemble based on the collection of votes. Ensembles tend to be more accurate than their component classifiers. We start off in Section 8.6.1 by introducing ensemble methods in general. Bagging (Section 8.6.2), boosting (Section 8.6.3), and random forests (Section 8.6.4) are popular ensemble methods.
Traditional learning models assume that the data classes are well distributed. In many real-world data domains, ...
Get Data Mining: Concepts and Techniques, 3rd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.