## Book description

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them *from scratch*.

If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

- Get a crash course in Python
- Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
- Collect, explore, clean, munge, and manipulate data
- Dive into the fundamentals of machine learning
- Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
- Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

## Publisher resources

## Table of contents

- Preface
- 1. Introduction
- 2. A Crash Course in Python
- 3. Visualizing Data
- 4. Linear Algebra
- 5. Statistics
- 6. Probability
- 7. Hypothesis and Inference
- 8. Gradient Descent
- 9. Getting Data
- 10. Working with Data
- 11. Machine Learning
- 12. k-Nearest Neighbors
- 13. Naive Bayes
- 14. Simple Linear Regression
- 15. Multiple Regression
- 16. Logistic Regression
- 17. Decision Trees
- 18. Neural Networks
- 19. Clustering
- 20. Natural Language Processing
- 21. Network Analysis
- 22. Recommender Systems
- 23. Databases and SQL
- 24. MapReduce
- 25. Go Forth and Do Data Science
- Index

## Product information

- Title: Data Science from Scratch
- Author(s):
- Release date: April 2015
- Publisher(s): O'Reilly Media, Inc.
- ISBN: 9781491901427

## You might also like

book

### Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. …

book

### Data Science from Scratch, 2nd Edition

To really learn data science, you should not only master the tools—data science libraries, frameworks, modules, …

book

### Python Data Science Handbook

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, …

book

### Python Crash Course, 2nd Edition

This is the second edition of the best selling Python book in the world. Python Crash …