Chapter 7. Logistic Regression Using Spark ML
In Chapter 6, we created a model based on two variables—distance and departure delay—to predict the probability that a flight will be more than 15 minutes late. We found that we could get a finer-grained decision if we used a second variable (distance) instead of using just one variable (departure delay).
Why not use all the variables in the dataset? Or at least many more of them? In particular, I’d like to use the TAXI_OUT
variable—if it is too high, the flight will be stuck on the runway waiting for the airport tower to allow the plane to take off, and so the flight is likely to be delayed. The Naive Bayes approach in Chapter 6 was quite limiting in terms of being able to incorporate additional variables. As we add variables, we would need to continue slicing the dataset into smaller and smaller bins. We would then find that many of our bins would contain very few samples, resulting in decision surfaces that would not be well behaved. Remember that, after we binned the data by distance, we found that the departure delay decision boundary was quite well behaved—departure delays above a certain threshold were associated with the flight not arriving on time. Our simplification of the Bayesian classification surface to a simple threshold that varied by bin would not have been possible if the decision boundary had been noisier.1 The more variables we use, the more bins we will have, and this good behavior will begin to break down. This ...
Get Data Science on the Google Cloud Platform, 2nd Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.