Skip to Content
Deep Learning for Coders with fastai and PyTorch
book

Deep Learning for Coders with fastai and PyTorch

by Jeremy Howard, Sylvain Gugger
July 2020
Intermediate to advanced
621 pages
16h 47m
English
O'Reilly Media, Inc.
Book available
Content preview from Deep Learning for Coders with fastai and PyTorch

Chapter 11. Data Munging with fastai’s Mid-Level API

We have seen what Tokenizer and Numericalize do to a collection of texts, and how they’re used inside the data block API, which handles those transforms for us directly using the TextBlock. But what if we want to apply only one of those transforms, either to see intermediate results or because we have already tokenized texts? More generally, what can we do when the data block API is not flexible enough to accommodate our particular use case? For this, we need to use fastai’s mid-level API for processing data. The data block API is built on top of that layer, so it will allow you to do everything the data block API does, and much much more.

Going Deeper into fastai’s Layered API

The fastai library is built on a layered API. In the very top layer are applications that allow us to train a model in five lines of code, as we saw in Chapter 1. In the case of creating DataLoaders for a text classifier, for instance, we used this line:

from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')

The factory method TextDataLoaders.from_folder is very convenient when your data is arranged the exact same way as the IMDb dataset, but in practice, that often won’t be the case. The data block API offers more flexibility. As we saw in the preceding chapter, we can get the same result with the following:

path = untar_data(URLs.IMDB)
dls = DataBlock(
    blocks=(TextBlock.from_folder(path),CategoryBlock
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Build a Large Language Model (From Scratch)

Build a Large Language Model (From Scratch)

Sebastian Raschka
Hands-On Large Language Models

Hands-On Large Language Models

Jay Alammar, Maarten Grootendorst

Publisher Resources

ISBN: 9781492045519Errata PageSupplemental Content