8

GANs for Improving Models in Genomics

One of the significant developments in the field of Deep learning (DL) has been the introduction of new generative models. The most popular generative models are Generative Adversarial Networks (GANs), Variational Autoencoders (VAE), deep autoregressive models, style transfer, and so on. We learned about what VAEs are in the previous chapter. GANs have become a hot topic in the DL research community in the last few years. They were introduced by Ian Goodfellow in 2014 and are considered one of the most interesting ideas of the last 10 years by Yann LeCun, who is considered the father of modern DL. A GAN, as the name suggests, is a type of generative model that is trained in an adversarial setting to learn ...

Get Deep Learning for Genomics now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.