11.7. Bibliography
[BAR 93] BARRET M., Etude de la stabilité des filtres numénques récursifs bidimensionnels, PhD Thesis, University of Paris-Sud, Orsay, December 1993.
[BAR 94] BARRET M., BENIDIR M., “A new algorithm to test the stability of 2-D digital recursive filters”', Signal Processing, vol. 37, p. 255-264, May 1994.
[BAR 94] BARRET M., BENIDIR M., “On the boundary of the set of Schur polynomials and applications to the stability of 1-D and 2-D digital recursive filters”, IEEE Trans. on Automatic Control, vol. 39, p. 2335-2339, November 1994.
[BAR 97] BARRET M., BENIDIR M., “Behavior of stability tests for two-dimensional digital recursive filters when faced with rounding errors”, IEEE Trans. on Circuits and Systems (II), vol. 44, no. 4, p. 319-323, April 1997.
[BEN 99] BENIDIR M., BARRET M., Stabilité des filtres et des systémes linéaires, Dunod, Paris, 1999.
[BOS 77] BOSE N.K., “Implementation of a New Stability Test for Two-Dimensional Filters”, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25, no. 2, p. 117-120, April 1977.
[BOS 93] BOSE N.K., “Simplification of a multidimensional digital filter stability test”, J. Franklin Inst., vol. 330, no. 5, p. 905-911, 1993.
[CHA 78] CHANG H., AGGARWAL J.K., “Design of 2-D Semicausal Recursive Filters”, IEEE Trans. on Circuits and Systems, vol. CAS-25, no. 12, p. 1051-1059, December 1978.
[COH 22] COHN A., “Uber die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise”, Math. Zeitschrifft, vol. 14, p. 110 ...
Get Digital Filters Design for Signal and Image Processing now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.