Skip to Content
Distributed Machine Learning with Python
book

Distributed Machine Learning with Python

by Guanhua Wang
April 2022
Intermediate to advanced
284 pages
5h 53m
English
Packt Publishing
Content preview from Distributed Machine Learning with Python

Section 3 – Advanced Parallelism Paradigms

In this section, we will learn state-of-the-art techniques on top of traditional data and model parallelism approaches. First, we will understand the concept of hybrid data-model parallelism. Second, we will discuss federated learning and edge device learning. Third, we will discuss elastic and in-parallel model training/inference in multitenant clusters or cloud environments. Finally, we will look at some more advanced techniques for further accelerating in-parallel model training and serving.

This section comprises the following chapters:

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

Serg Masís
Distributed Computing with Python

Distributed Computing with Python

Francesco Pierfederici

Publisher Resources

ISBN: 9781801815697Supplemental Content