Skip to Content
Evaluating Machine Learning Models
book

Evaluating Machine Learning Models

by Alice Zheng
September 2015
Intermediate to advanced
20 pages
1h 20m
English
O'Reilly Media, Inc.
Content preview from Evaluating Machine Learning Models

Preface

This report on evaluating machine learning models arose out of a sense of need. The content was first published as a series of six technical posts on the Dato Machine Learning Blog. I was the editor of the blog, and I needed something to publish for the next day. Dato builds machine learning tools that help users build intelligent data products. In our conversations with the community, we sometimes ran into a confusion in terminology. For example, people would ask for cross-validation as a feature, when what they really meant was hyperparameter tuning, a feature we already had. So I thought, “Aha! I’ll just quickly explain what these concepts mean and point folks to the relevant sections in the user guide.”

So I sat down to write a blog post to explain cross-validation, hold-out datasets, and hyperparameter tuning. After the first two paragraphs, however, I realized that it would take a lot more than a single blog post. The three terms sit at different depths in the concept hierarchy of machine learning model evaluation. Cross-validation and hold-out validation are ways of chopping up a dataset in order to measure the model’s performance on “unseen” data. Hyperparameter tuning, on the other hand, is a more “meta” process of model selection. But why does the model need “unseen” data, and what’s meta about hyperparameters? In order to explain all of that, I needed to start from the basics. First, I needed to explain the high-level concepts and how they fit together. Only ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning with TensorFlow, Second Edition

Machine Learning with TensorFlow, Second Edition

Chris Mattmann

Publisher Resources

ISBN: 9781492048756Errata Page