Skip to Content
Evolutionary Deep Learning
book

Evolutionary Deep Learning

by Micheal Lanham
August 2023
Intermediate to advanced content levelIntermediate to advanced
360 pages
10h 23m
English
Manning Publications
Content preview from Evolutionary Deep Learning

Part 2. Optimizing deep learning

In this part of the book, we look at evolutionary and genetic algorithms that may be used to optimize and improve deep learning systems. We start in chapter 5 by solving a core problem in deep learning: hyperparameter optimization. This chapter demonstrates various methods, from random and grid search to genetic algorithms, particle swarm optimization, evolutionary strategies, and differen- tial evolution.

In chapter 6, we move into neuroevolution with the optimization of deep learning architecture and parameters. We demonstrate how network parameters or weights can be optimized without the need to use backpropagation or deep learning optimizers.

Then in chapter 7, we continue demonstrating neuroevolution for ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning

Deep Learning

Andrew Glassner
Practical Simulations for Machine Learning

Practical Simulations for Machine Learning

Paris Buttfield-Addison, Mars Buttfield-Addison, Tim Nugent, Jon Manning

Publisher Resources

ISBN: 9781617299520Supplemental ContentPublisher SupportOtherPublisher WebsiteSupplemental ContentPurchase Link